MNase-seq
MNase-seq, short for micrococcal nuclease digestion with deep sequencing, is a molecular biological technique that was first pioneered in 2006 to measure nucleosome occupancy in the C. elegans genome, and was subsequently applied to the human genome in 2008. Though, the term ‘MNase-seq’ had not been coined until a year later, in 2009. Briefly, this technique relies on the use of the non-specific endo-exonuclease micrococcal nuclease, an enzyme derived from the bacteria Staphylococcus aureus, to bind and cleave protein-unbound regions of DNA on chromatin. DNA bound to histones or other chromatin-bound proteins (e.g. transcription factors) may remain undigested. The uncut DNA is then purified from the proteins and sequenced through one or more of the various Next-Generation sequencing methods.
MNase-seq is one of four classes of methods used for assessing the status of the epigenome through analysis of chromatin accessibility. The other three techniques are DNase-seq, FAIRE-seq, and ATAC-seq. While MNase-seq is primarily used to sequence regions of DNA bound by histones or other chromatin-bound proteins, the other three are commonly used for: mapping Deoxyribonuclease I hypersensitive sites (DHSs), sequencing the DNA unbound by chromatin proteins, or sequencing regions of loosely packaged chromatin through transposition of markers, respectively.